Gamer.Site Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  3. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    where (,) is the volume dependence of pressure at room temperature , and (,) is the temperature dependence of pressure at constant volume , known as thermal pressure. For the ideal gas at high pressure-temperature (high P-T), the soft gas is filled in a solid firm container, and the gas is restrained inside the container; while for a solid at ...

  4. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Temperature dependence of viscosity. Viscosity depends strongly on temperature. In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases ...

  5. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    The Clausius–Clapeyron relation describes a Phase transition in a closed system composed of two contiguous phases, condensed matter and ideal gas, of a single substance, in mutual thermodynamic equilibrium, at constant temperature and pressure. Therefore, [7] : 508. Using the appropriate Maxwell relation gives [7] : 508 where is the pressure.

  6. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.

  7. Gas laws - Wikipedia

    en.wikipedia.org/wiki/Gas_laws

    The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called Gas Laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.

  8. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    The temperature of this point, the Joule–Thomson inversion temperature, depends on the pressure of the gas before expansion. In a gas expansion the pressure decreases, so the sign of is negative by definition. With that in mind, the following table explains when the Joule–Thomson effect cools or warms a real gas:

  9. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    The pressure and temperature of the gas are directly proportional: As temperature increases, the pressure of the propane gas increases by the same factor. A simple consequence of this proportionality is that on a hot summer day, the propane tank pressure will be elevated, and thus propane tanks must be rated to withstand such increases in pressure.