Gamer.Site Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Jerk (physics) Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units) or standard gravities per second ( g0 /s).

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...

  4. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    e. In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p2, the object has received an impulse J : Momentum is a vector quantity, so impulse is also a vector quantity. Newton’s second law of motion states that the rate of ...

  5. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum ( pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p ...

  6. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The Second Law of Motion, the law of acceleration, states that F = ma, meaning that a force F acting on a body is equal to the mass m of the body times its acceleration a. The Third Law of Motion, the law of reciprocal actions, states that all forces occur in pairs, and these two forces are equal in magnitude and opposite in direction. Newton's ...

  7. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In classical mechanics, the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed. The kinetic energy is equal to 1/2 the product of the mass and the square of the speed.

  8. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    Internal friction is the force resisting motion between the elements making up a solid material while it undergoes deformation. Plastic deformation in solids is an irreversible change in the internal molecular structure of an object. This change may be due to either (or both) an applied force or a change in temperature.

  9. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes its speed or direction to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]